integrating accelerometer - significado y definición. Qué es integrating accelerometer
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es integrating accelerometer - definición

FUNCTION THAT IS COMMONLY USED TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS
Integrating factor method; Method of integrating factor; Intergrating factor; Integration factor; Integrating factors; Integrating factor technique; Euler multiplier

PIGA accelerometer         
TYPE OF ACCELEROMETER
Müller-type pendulous gyroscopic accelerometer
A PIGA (Pendulous Integrating Gyroscopic Accelerometer) is a type of accelerometer that can measure acceleration and simultaneously integrates this acceleration against time to produce a speed measure as well. The PIGA's main use is in Inertial Navigation Systems (INS) for guidance of aircraft and most particularly for ballistic missile guidance.
Laser accelerometer         
Laser Accelerometer
A laser accelerometer is an accelerometer that uses a laser to measure changes in velocity/direction.
Integrating factor         
In mathematics, an integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials. It is commonly used to solve ordinary differential equations, but is also used within multivariable calculus when multiplying through by an integrating factor allows an inexact differential to be made into an exact differential (which can then be integrated to give a scalar field).

Wikipedia

Integrating factor

In mathematics, an integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials. It is commonly used to solve ordinary differential equations, but is also used within multivariable calculus when multiplying through by an integrating factor allows an inexact differential to be made into an exact differential (which can then be integrated to give a scalar field). This is especially useful in thermodynamics where temperature becomes the integrating factor that makes entropy an exact differential.